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1. Introduction.

The primary purpose of this paper is to develop and analyze
some practical numerical methods for handling weaskly singular quadra-
ture; that is, for IIf(t)dt where f is Lebesgue integrable on I
(so called "improper integrals"). We also extend this development and
snalysis to the case where some derivative of f 1s Lebesgue integrable
and has finitely many unbounded points on I. We shall be particularly
interested in obtaining "best" possible order estimates for compound
quadratures,

It is known (although possibly not well known) that Peano's
theorem can be applied to analyze the error in "low continuity” numeri-
cal quadrature., For example fgtl/ 2dt approximated by the trapezoid
rule:

Let h >0, Nh =T, E(T) = error. Then
E(T) = [gtl/ 24t - bih +¥2h +...+V(N-1)h + (1/2) VEn).
By Pea:no's theorem, c.f, e.g., Sard [1, p. 1k]
B(r) = [3(y/2)e Y x(e)at

where K(t) = (j + 1/2)h-t on jh s t < (j+l)b. Apply the Minkowski

inequality with 1/p +1/q =1 and 1£q<2;



B £ (/205 Y3 %0 YU k) R 2,

(Clearly [+2|9 is integrable for 1% q<2.) Now use the defini-

tion of K(t)s:

fgix(t)lpdt =N jgl n/2 - t|Pat = 2 fg/ 2tPat
= (20/(p+2))(8/2)"* = (8/(p+1)) (n/2)®

= {T/(p+1)}(1/2)P.
Therefore “KnL(p) = (T/(p+1)}1/ P(n/2). since
I Y2 %¢ = (2/(2-q))r Y3,
then

[5(n)] = (/%) (x/(pe2)) ¥/ P2/ (2-q)) Y o/a - V2

= 1/2(pa1) Y 2(2/(2-90) Y Y.
One could proceed further and analyze the constant
Ka) = (p+1)"YP(2/(2-0) /2

subject to 1/p +1/q =1, 1§ q <2, One can conclude (by very



tedious menipulations) that k(q) for 18 q <2 takes or its minimum
at q =1, In this case k(1) = 2, Hence the minimum estimate on
|E(T)] by this spplication of the Minkowskl inequality to Peano's

theorem is
|E(T)| = (VT m)/2.

Although this estimate is optimal (in the above sense), it is overly
pessimistic, because one can show that E(T) = 67(h3/2). This can be
seen in Example 2 in Section 3 below. Indeed with a little extra care

one can sharpen the result in Example 2 to show that
1/6 = h‘3/2E(T) s 1/6 + 1/16,

This then clearly demonstrates that applying the Minkowski inequality
to Peano's theorem may possibly yield substantially less information
than is desirable,

In Section 2 we shall show how Peano's theorem and the Min-
kowski‘inequality can be applied in general to singular quadrature gques-
tions. In particular we generalize the first type of analysis presented
sbove for fgtl/adt where E(T) = #{(h). In Section 3 we shall refine
our analysis to obtain better information., In particular we generalize
the second type of analysis stated above forthe case fgtl/edt where
B1) = 63,



The dravbacks for the usual Minkowski-Peano approach become
even more exaggerated for fgt'l/adt where the integrand itself has
a weak singularity. Since the hypotheses of Peano's theorem requires

absolute continuity and since £(t) = t'lla

is not even continuous
at zero, then Peano's theorem cannot be applied directly. In Section
4 we show how this situation can be remedied., We propose a simple
modification of the usual compound quadrature rule which we call the
method of "avoiding the singularity”. We then establish general error
bounds along with convergence rates for this numerical quadrature of
weakly singular integrands.

The use of Peano's theorem to obtain error estimates for
quadrature of functions with low continuity is known. For example
Stroud [2] has recently studied certain aspects of this method. Nu-
merical quadrature of singular functions has also been studied. Davis
and Rabinowitz [3] establish various convergence theorems with interest-
ing lim inf results which were extended by Rebinowitz [4]. Gautschi
(51 apélied some of the work of Rsbinowitz and obtained convergence
theorems for two quadratures of interpolatory type. In none of these
papers are error bounds explicitly given, although for example the proofs
in [2] may be ﬁsed to obtain certain estimates (see [2], line (3.7) and
the proor of Theorem 3). All of these results require that the inte-
grand be monoteone in a neiéhborhood of the singularity. Fox [6] gives
some error bounds for singular quadratures. His work is very special

and does not seem to generalize,



The main results of this paper predict rather slow convergence
rates for weakly singular numerical quadratures, Various numerical ex-
periments verify these predictions, Moreover there ma& be no advan-
tage in using a better rule (e,g. Simpson rather than trapazoid), see
{7, p. 77) for a striking example of this. If one knows enough about
the integrand, it may be possible to change variables or otherwise to
~eliminate the singularity, see for example {7, pp. 72-73] or [8, pp.
346-352]. In other cases one might wish to use specisl numerical
quadrature methods which are specifically designed for particular sin-
gular integrands, Two examples of such methods are given in Atkinson
[9, sections 2,1 and 2,2] and Schweikert [10].

In Section 5 we apply our results of the earlier sections to
the question of singular quadrature in the convolution case, This work
in particular will be used in its full generality by the authors in a
sequel paper which studies numerical solution of weakly singular Vol-

terra integral equations of the form
x(t) = £(t) + [oa(t-s)G(x(s))ds (0 5% 8 T)

where f and G are smooth but a(t) may be singular at t = 03

2, Basic Estimates
Consider an approximate quadrature rule defined on the stan-

dard interval 0 =2t 5 1g



(R) R(f) = I v f(x,)

with error
E(£,R) = f;'f(t)dt - R(£).

It will always be assumed that the abscissas xy satisfy the inequali-
tles 0 § x) < x; <.uo <X; £ 1, In addition we shall assume same or

all of the following hypotheses in the sequel:

(A1) fe cn'l[o,lj where n 21 is a fixed integer and o1 4o
absolutely continuous on 0 £t € 1,
(A2) E(p,R) = 0 for all polynamials p(%) of degree & n-l.

(A3) The weights vy

() £ec™Xo,1) and #PD 15 absolutely continuous on [0,T].

are positive for J = 0(1)J.

The symbols Jj = 0(1)J means J =0,1,2,...,J. The integer
n 1 in hypotheses (Al) and (A2) are the same fixed value,
For any subinterval I of the real line let XI(t) denote

the characteristic function of the interval I, that is
X (t) =1 if teI; =0 if t {1,

For our purposes the following special case of Peano's theorem will suf-

fice, c¢.f, [1, p. 1k4],



Theorem 1, Assume the rule (R) together with hypotheses (Al) and (AZ).

Define

£,(t) = (t-s)n'lxto’s](t)/(n-l)!

for 0 % 8,t 1 where n is the integer given in (Al-2), Then the

error E(f,R) may be written in the form

(1) 5(2,8) = /3" ()K (8)as

where I&(s) = -E(fs,R) for 0855,

The function Kn( s) can be explicitly calculsted when R
and n are known, For example if R is the midpoint rule, then J =0,
wo =1 and x°=1/2. For n=1

K,(8) = -s if © §8<1/2) =15 if 1/28s8<1,
In the general case
(2) K(8) = (-)"8%/nt + LY wi(x,-9)" /(a2

when X i§s< X 41 If X5 >0 or if X5 < 1, then similiar formulas

may be obtained for the intervals 0 & 3 < %y and X5 £8<1l In



particular (2) shows that K is of class Lp(o,l) for all numbers
p in the interval 1§ p § =, Therefore Theorem 1 and the Minkowski

inequality imply the following result,

Corollery 1., Assume the hypotheses of Theorem 1, If f(n) €

1%0,1) snd if 1/p + 1/q = 1 then
(3 15eB)] s UK P YUY £ () WS (1<a<e)

with similiar formulas for the cases q =1 and q = o,

In general the calculation of the 1P norm

() Il = CaE(N P Y? (18 p<a)

may be difficult if 1 £ p £ o, Since the norm

(4.1) 1Kl oy = max{|K(8)]2 0 5 8 5 1)

is easy to obtain numerically, then it may be convenient to use the
estimate “‘%“L(p) H "Ku"L(n)' If this is not sufficient, then it is
possible to obtain a universal estimate under the additional hypotheses
(A3).

Corollary 1*, Assume the hypotheses of Theorem 1. If f(n) € Lq(o, 1)

and 1/p + 1/q = 1, then




v (R 5 Ik gy & IkH ™M)

_If in addition (AD) is true, then "Kn"n(u) s (n-v-l)/n‘.'

Proof. Only the last statement needs further proof. Assumptions (A2)
and (A3) imply that ’337.0"3 =1, Por k =0(1)J and for s din the

interval x, & 8 <X equation (2) implies that

|l%(s)| & 1/n! + zg_cw:’/(n-l)!

£ 1/nt + (T ‘; o¥y)/(a-1)t = (ns1)/nt

If x, >0 then ‘Kn(‘” & 1/n! & (n+l)/n! 4n the interval 0 & 8 < x,.

Similierly if x; <1 and if x; &8 <1 then IKn(s)l s (n+l)/n!. Q.E.D.
These basic results are easily extended to general intervals
and to compound rules. Given an interval a § t § a+B, one can use the

transformation T = g+Bt to compute
a+B J
=
3 Kt)dT = B fol!‘(a+Bt)dt B 23 :wjl‘(quJ).

For example if (R) is the midpoint rule R(f) = £(1/2), then one can

replace B by h and write
f:*hr(r)dr % h P(a+h/2)

in the usual way, If (R) is Simpson's Rule, then we think of B = 2h
and wri'te



[2*%Bg(x)ar & (b/3)(F() + UF(ash) + P(as2b)).

Corollary 2, Assume (A2) is true, F ¢ cn'l‘[,,‘..,g] and F(n-l) is
absolutely continuous on a % t & a+B, Then all the following state-

ments are true,

a. The error E = [:*Br(t)dt - J-O Jr(a-m ) may be written in

the form

E=B I“an("‘)r(n)(s)as

vhere K (8) is the function glven in Theorem 1 above.

b I¢ K% ¢ 1Y(a,a), 4f p e Yool ma it Kl s the
1P porm of K, over the interval {0,1] (see (4)), then

ERE et TN P BILBEA

e, If in addition to the hypotheses listed above (A3) is also true,

then
12 & 8**Y/P(na1)/nt (12311 ()] %0) ¥

Proof. By Theorem 1 above



J
w

320 ;jF( a+Bx

E=B fé F(a+Bt)dt -B z ;;)
n

=B féxn(s)(%s—nr(amnds

= " fé‘&n(s)F(n)(a-st)ds

= B :*an(%a-)r(“)(s)ds.
This proves a. Part b, follows from part a. and change of variables
(P (5501 Pas P = (R (o) e el = 5P

Part ¢. follows fram b, since - £ (n+l)/n! Q.E.D.
ow “Knuup) IIK,,NL(,,) (n+1)/ Q
Now consider a compounding of the rule R over an interval
0sStsT Let T =NB where B >0 and where N 1is an integer

larger than one. If R is compounded N times over [0,T] then

(N x R) N X R(£) = 21;3{2 '; OB E(Bx 4B))
Let E(f) = fgf(t)dt - N X R(f) be the error.

Corollary 3. Suppose (A2) and (A4) are true., Then all of the fol-

lowing statements are true:

2. EN(f) = fgf(n)(t)'ﬁn(t)dt where En(f,) = Kn(t/B -k) on
kB £ t < (k+1)B,



b, If #®) ¢ 1Y0,T), Yp + Vg =1 ;.gg Ixlp(py i defined as
in (4), then

50l & YRR UT LD (1) San e
c. If in aadition (A3) is true, then
(0] 5 (EPrY/P(ma)/nt) (1) 67 (8)] Sty Ya,
Proof. Write the error in the form

E((f) = Zao fg‘*Bf(t\dt ZJ B £(B(x,+1))],

and then apply Corollary 2,a:
N-1_n kB+B_(n n. (n),, \=
Eg(f) = by k=013 ka P )(t)Kn(t/B-k)dt =B fof( T(£)K (t)at.
Since fg(t) is periodic of period B on O £t ST, then

fglin(t)lpdt =N fglin(t)lpdt = NB fé] Kn(t)lpdt

= Pl

Therefore



B E(D)] 8 (Y] £0 (5] %ty YR (4)] Paty P

- U5 Do) Yo Ry

If (A3) is true then “‘%“L(p) s "Knuh(m) s (n+1)/n! Q.E.D.

1/2

Example 1, Consider f 1t dt approximated by the trapezoid rule,
0

In this case B=h, T =Nh =1 n=1 and K(s) = (1/2)-s on the
interval 0 £ s <1, Therefore

1 1, 2 1

fo|l(l(s)[pds = fol 1/2 - s|Pas = f(])’/ |1/2 - s|Pas + 11/2‘ 1/2 - s|Pas

= fé'/zspds + fg‘/zspds = Q'P(p+l)-1.

1/2)-1

Since f£'(t) = (2t € Lq(o, 1) for 1% g <2, then Corollary

3 implies that

(3 572 0 2 P(p) Yke?)

- n(2/3 " P Y51y " HP(2q) /Y
for 1<q<2. If g =1, then
& 18, (tY3)] 5 n(1/2) /3263 Tt = v/,

Part ¢, of Corollary 3 implies an even more pessimistic estimate

IEN(tl/z)l s 2h, Section 3 will produce estimates which are ﬁ(hj/z).



1k

3. Refined Estimates.

Definition 1. A function f 1is said to be weakly singular of order

v if snd only if

s fec(0,T] if v=0 or fec 0,71 nc"0,7] if vz,

b, for each ¢ >0 the function f(v)(t) is sbsolutely continuous

on the interval e¢d ¢t =T, and

¢, the function @, defined by

(D o (t,2) = 1 £ @] + [ (o] as

is of class L'(0,1).

For any integer N 2 0 1let WS(v) denote the set of all
functions f which are weakly singular of order v, For example if
0<r<1l and T =1 then £(t) = logt and g(t) = sin(t™") are
in ws(0). In these two cases qo(t, f) = -logt and qo(t,g) st7T,
In general f(t) = tv'r, 0<r<1l, is of class WS(v) so that each
class WS(v) 4is not empty., The following lemma is an immediate con-

sequence of the definition.

Lemma 1., If f ¢ WS(v) then \f(v)(t)| s av(t,f) .‘ZEEE interval

O0<tsT.

Theorem 2. Suppose (A2) is true for some integer n = v+41 where

vzl If feWS(v) then the error EN(f) obtained by a in

the compound rule (N X R) satisfies the inequality




15
(8) |By(D] 5 BIgq (v, attlik fi oy + 1K, ol )

In particular if (A3) is also irue then

(9) le(2)] & B'(VP43v43)/(vaD)t Ser (8, D))
Proof, Write E = EN( f) in the form

E = {fgf(t)dt - X gﬂBwjf(BxJ)} + {fg'Bf(t-t-B)dt

> gjswjf(ls(xd-t(kd)))}-

Apply Corollary 3.b to the first summand with n=v, ¢ =1 and to the

second summand with n = v4l, g = 13

12 = 2K U £ () ee) +

YK,y U5 P (am) at)
Now use (7) and Lemma 13

|E| = Bv"Kv"L(”)ch)av(t,f)dt +

ik, .l 1) (9,(B, £)-0,(T, D).

Since av(t, f) 1is nonnegative and nonincreasing in t, then

Bla, (B, £) -0 (T, £)) S Ba,(B,f) foo,(t, fat,
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Therefore (8) follows, The estimate (9) follows from (8) and the in-

equality “"n":.(m) $ (n+l)/n!  Q.E.D.

Example 2, Consider f;tl/adt approximated by the trapezoid rule.
(The seme example as at the end of section 2,) Then B = h, T = 1 = Nh,

n=2, v=1 and

Ki(8) =1/2 -5, Ki(s) = s(s-1)/2.
It is easy to compute o&ﬁt) = (1/2)t'1/2 and Igal(t)dt = h1/2.

Therefore (8) implies that
|2 &YD] = n1/2 + yat/? o o/ml?,
Even less camputation is required to see that (9) implies

15 (+Y2)] 5 1/,

Either result shows that the error is or order ¢9(h3/2

) as h =
1/N 20, The estimates in section 2 where &(h).

Theorem 2 gbove cannot be applied if the integer n in
hypotheses (A2) is equal to one but f € WS(v) for some integer v % 1,
However such situations are already covered by Corollary 3 above,

For example if the midpoint rule M is applied to £(t) -~f¥, then
by Corollary 3 the error is d?(bl/z). The reverse situation v =0
and n 2 1 is more complicated. This situation is the topic of the

next section,
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L, Estimates when v =0,

If fews(v) and v =0, then t =0 may be an unbounded
point of f. In this case the compound rule (N XR) ‘need not be well
defined, Even if (N X R) is well defined (e.g. if rule R is open
at t = 0) the previous estimates do not apply. One simple method of
handling both of these problems is to avoid the singularity at t =0,
This idea leads to the following approximation rules

Let T =NB where B >0 and N>1 4is an integer., Com-

pute
R (T,1) = 21;:1{2 ';=03wa(ij+1(3)}

and let EA(f,N) = error.

Rule R, will be called the method of "avoiding the singu-

larity". This rule is the usual compound rule except that no attempt

1s made to approximate on the initial segment [0,B].

Theorem 3, Suppose (A2) is true for n = 1, If £ e WS(0) then
B
(10) | (5M)] & (1 + [IKyll ) Moo (B, D)at.

In particular if (A3) is also true, then

() |E,(5,)] 5 3 [oo(t, Dat.



Proof. Define fB(t) = f(t+B) on O & t £ T-B, Then the error EA =

EA( f,N) bas the form
E, = [or(t)dt + B (£;)
A 0 -1'"B

where Ek(g) is error for the usual compound rule, Apply Corollary

3.,b with n =q = 13
IB,| s [\ 2(e)]at + Kyl 7025 ()] a
- [ee) et + BIRyl 5 f3 £ (9)] et
Use Lemma 1 and the definition (7):
[Re(6)]at s [Fa (¢, 2)at,

and

Bl (w)]at = ay(B,2) - ap(T,9)
5 (1/B)Bay(B,¢) & (1/3)!3%('0, £)dt.,
This proves (10).

If (A3) is also true, then "Kl"L(w) s (1+1)/1% = 2, There-

fore (11) follows immediately from (10). Q.E.D.
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Example 3, If f£(t) =t °, 0 <r <1, then it is easy to compute

a(t, 1) = ™", Theorem 3 predicts E, = S (YT as B0, If f£(t) =
t'rsin(t'v) , where r,v >0 and r+v <1, then by Theorem 5 one has

at least E, = A (YY), If £(t) = t"Tein(log t) where 0 <r<1

then E, = O(3YT) st least.

5. Convolution Integrals

Consider a convolution integral

(12) I= [gf('r-s)g(s)ds = fgf(s)g('.l‘-s)ds.

Theorem 4, Suppose (A2) is true for n = v+l, In sddition assume

i. feWS(v) where v 1l and

v+l

11, ge ¢'[o,71 n Yo, 11 with &V e tXo,m).

Define F(t) = f(t)g(T-t) on 0 s+t ST, Let L>O0 be a bound for

each of the functions |f£(t)|, |&(t)], |g'(t)|,...,|g('”(t)| on the

interval 0 st £ T, Then the error EN(F) obtain by applying the com-

pound rule NXR to F satisfies the estimate

|Ey(®)] & 18°CIK My + 1K, il ay) Q00 (8, DI

+3 50V + 2 ;.l(";lnf(”(s)nas]

where (?) - kt/38(k-3)1.



Proof, For any number s 4in the interval 0 < s & T one has

V0 (e) « 2 VA D () (2-a).

. Therefore if L is the bound defined above, then

, 'F(wl)(s)l s LT v;lnf(v-t-l-j)(s)“ .

v
3ot

I‘l 8(v+l)('r-8)' .
This shows that F € WS(v) and

a(t,F)  La(t,0) + Lfi[g(wl)('f-s) +

z 3.1(";1)[ f('”(s)l }ds.

Apply Theorem 23
Ig(P % B*CIK,) + Ik, o) fga, (¢, F)at
s V(I + 1K, D 0USa,(t, D)ot +
Igfz(ls(wl)(T-S)l + 2V (V) D (8] asat).

1l

By nonnegativity and Fubini's theorem
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Igfz(l &V (1-5)| + T ;-1(";1)[ ££9) ()| Yasat
5 [33(.. )asat = [515(+ + )atas

-850 V) + 21 E) has, aE.

The next results follow immedistely from Theorem b,

Corollary 4, Suppose the hypotheses of Theorem i are true. Pick any

number M, >O which satisfies the estimate
bsM fgav(t,f)dt. (o<bsEm
Then |B(F)| & MB"[0, (¢, £)at wvhere
(24) M= LR gy + Il + /50160

+ X ;'l(v.;l” f(‘j)(s)l Yds).
Corollary 5. Suppose the hypotheses of Theorem 4 ere true. For any

integer N >0 let B = T/N and define

1, = [Pe(e)e(sp-s)as. (3 = LW

Let E j be the error in approximating I; by the compound rule

(4 X R). Then



|5, s w"fGq L, Nat (3 = UN)

where M is the constant defined by (14). In particular M is in-
dependent of N 1 and of J = 1(1)N,

A similar analysis obtains when v =0,

Theorem 5. Suppose (A2) is true for n = 1, Assume f ¢ WS(0), g

is sbsclutely continuous on O $ t T and L 1s a bound on €3

.g&r- Of+¢t87T, Define

P(s) = £(s)g(T-8) (0<t =T

‘Then the error EA obtained by applying the method avoiding the sin-

gulerity to F gsatisfies the estimate

B,(&M] & (1o 5l )T + 5] & (o) am) g (1, Dhat,
Proof, Since F'(s) = £'(s)g(T-s)-£(s)g'(T-8), then F € WS(0) and

P (s)| 5 L (a)] + | 2(a)]] e (T-8)]

5 UL (s) +a(s,0)]e (r-0)]
on 0<8<T, Iaparticular then

ay(t,P) & Lo (t,0) + fiq(s,0) e (1-8)|as.
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Apply Theorem 33

|EA| s (1+ nl{ln)fgao(t,lﬂdt

s (2l ) (Lfga(t, 0) + fgff;ao(s,f)lg' (T-8)| dsdt.
Since ao(t, f) is nonnegative and monotone in t, then

fgfzao( s, £, g'(T-5)]|dsdt s fgao(t, £) le g'(T-s)] dsdt

s (Igao(t, f)dt)([%] g'(s)|ds). Q.E.D.

Corollary 6, Assume the hypotheses of Theorem 5. For any integer

N>0 let B =T/N and define
JB . .
I;] = IO f(s)g(jB-s)ds. (j = 1(1)N)

Iet E,(J) be the error obtained in spproximating I, by the rule

RAD Then

Byl 5 (1 + Iyl (L + ol e ()] as) [Gog(t, £ at

where L is the bound defined in Theorem 5. (This estimate is inde-

pendent of N and j.)
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5. Numerical Examples,

The results in sections 3 and L were verified by numerically
integrating the function f£(t) = atasin(t'b) for various values of the
parameters q,a and b with -1<a<1l and 0. &b <1, These com-
putations were performed on a CDC 6600 computer at the Lawrence Radiation
Laboratory, U.S. Atamic Energy Commission, They were designed and im-
plemented with the help of Dr. Fred Fritsch,

Some computations were recomputed in double precision. The

“numerical evidence obtained in this way suggests that round off errors
had no effects on the calculations over the full range of values of h.
Experiments were made using both the method of "ignoring" the singu-
larity (see [3]) and the method of "avoiding” the singularity (section
3 above)., "Avoiding' is easier to handle thecrctically while "ignor-
ing" was a bit easier to program. Ignoring gives slightly better ac-
curacy for monotone integrands while avoiding may be a bit better for
oscillating integrands.

Table 1 contains results for the integral
(15) I=(l+a)fMt%t =1
= a 0 =1,
for the value a = -1/4, Simpson's rule was employed with h = o7k

and k = 1(1)15, The constants C(h) in table 1 were computed by

putting the error in the form E(h) = C(h)hl"'a. Then



(16) c(h) = B(h)/nl*e,

These values of C(h) appear to be converging as h =0, As a second
check on the possible asymptotic form of the error one can assume that

E(h) = coh" (at leest asymptotically). Then p may be calculated

using the formulas -

E(h) - E(2h) log Q
(7 Q- E§h725 SEm? PTTog2

(One can also calculate C, in this menner.) The last column in
table 1 is computed using (17).

(Printer: 1Insert table 1 near here)

Table 1 indicates slow but monotone convergence, The error
appears to have the form E(h) = C(h)hB/h where C(h) =Cy = .6099...
as' h - 0. This general behavior is typical of the integrand (15)
for 0 <|a] < 1. For example if a = .75 in (15) Simpson's rule

gives much more rapid monotone convergence?

5(27) = 99956,

s(2'1°)

99999 88,

s(2™ )

«99999 9997.

(7

In E(h) = ¢( h)hl‘ the corresponding values of C(h) ares



¢(2™?) = -.1878,
o(2"0) = -,2185,

o2 ) = -.2265,

The values of C(h) appear to be converging rather slowly. If
a = -,99 in (15), then Simpson's rule hardly appears to converge

at alls

8(27%) = .039,
82~ - o072,

s(2‘15) = .10k,

On the other hand the constant C(h) in the error term converges

rapidlys

o2y = -.g9u438,
¢(22) = -.g94287,

c(27%) = -.99u28k,

c(2'u) = -,994238
6(2™%) = -.99423 596

e(28) = -.9923 534



1
c(27%) = -.99423 5131 for k = 10(1)15.
(Printer: Insert Table 2 near here)

Table 2 contains results (using the trapezoid rule) for

the integral

I= jgt'l/ Zsin(t P)at

where b= .25, Convergence is very slow and is not monotone, No

asymptotic formula E(h) = Cohp is discernible using either of the

two tests (16) and (17). On the other hand for the small value
b = .01 convergence is monotone at a rate E(h) = C(h)h‘ug where

C(h) is a slowly varying function of hs

o2y = 1.286,
c(27%) = 1.246,

c(2']°) = 1,228,

At the opposite extreme b = ,49 convergence is very slow

'1'(2'5) = 9477,
(2 = .9972,

r(e'15 ) = 10232,



28

convergence is not monotone and no approximate asymptotic error for-

mula is appérent.
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Table 12

Error

-.36655
-,21663
-. 12847
-.07631
-.0L535
-.02696
-,01629
-.00953
-.00567
-.00337
-.00200

‘000119

| -.00071

-.000'4»2

-.00025

£(t) = 5872

-,61645
-.61271
-.61112
-.61045
-.61016
-.61005
-.61000
-+60997
-.60995
-.60996
-.60996

+ 76609
. 75692
15293
« 75123
.75052
. 75022
« TX009

« 75002
« 75001
« 75000



n AN | [ S Y R

Teble 23 f(t) = 1;‘1/ esin(t'l/ l‘)

B o ©® =9 o

- 1.5951

1.5696
1.5319
1,5034
L1975

&

L

1,5103
15211
1,5157
1.5102
1516k
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